Modules over Group Rings of Locally Finite Groups with Finiteness Restrictions
نویسنده
چکیده
We study an RG-module A , where R is a ring, A/CA(G) is infinite, CG(A) = 1, G is a group. Let Lnf(G) be the system of all subgroups H ≤ G such that the quotient modules A/CA(H) are infinite. We investigate an RG-module A such that Lnf(G) satisfies either the weak minimal condition or the weak maximal condition as an ordered set. It is proved that if G is a locally finite group then either G is a Chernikov group or G is a finite-finitary group of automorphisms of A.
منابع مشابه
Gorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کاملOn nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملUPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملThe Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کاملOn Minimal Artinian Modules and Minimal Artinian Linear Groups
The paper is devoted to the study of some important types of minimal artinian linear groups. The authors prove that in such classes of groups as hypercentral groups (so also, nilpotent and abelian groups) and FC-groups, minimal artinian linear groups have precisely the same structure as the corresponding irreducible linear groups. 2000 Mathematics Subject Classification. 20E36, 20F28. Let F be ...
متن کامل